Transcript

Noah Kravitz (Host): Hello, and welcome to the NVIDIA Al Podcast. I'm your host, Noah Kravitz.
Artificial intelligence is powering a new generation of physically accurate models and simulations
that are changing the way research and planning are done.

In the past few months, we've explored industrial simulation on the podcast, talking about how
companies like Siemens are designing and optimizing factories with the help of Al and technologies
including digital twins. Today, we're exploring one of the most fascinating-and arguably
important-uses of Al for simulation: climate simulation.

Mike Pritchard, Director of Climate Simulation Research at NVIDIA, is here to talk about the role of
Al in climate science and how Al-driven climate modeling is helping us understand, predict, and
prepare for extreme weather and climate change. Mike, welcome, and thank you so much for joining
the Al Podcast.

Mike Pritchard (Guest): Thanks so much, Noah. It's great to meet you.

Noah: Maybe we can start by having you share a little bit about your own journey and how you got
into working on climate science.

Mike: Sure. Well, it was a little windy road for me. | came out of high school not sure if | wanted to
study jazz music or chemistry, and | landed in an astrophysics program. | learned about the cosmos,
had my first summer job doing astrophysics research, and realized | didn't really care about how two
galaxies are going to collide in 15 billion years enough to work on it all summer.

So | took a year off traveling halfway through my undergrad. | ended up visiting Bangladesh, met all
these amazing people living so close to sea-level rise, and thought back to a course I'd taken on
radiative transfer in planetary atmospheres. | realized there was a physics problem that really
matters to the world. | haven't looked back since.

| did a master's, got a couple of ice-sheet simulators into San Diego to do a PhD studying the daily
cycle of rainfall and how we can simulate rainfall systems in climate models better. And eventually, |
realized there's a computer problem here: we know the equations we'd like to solve, but computers
aren't up for it.

Any algorithm that could help me get more explicit cloud physics for realistic storm simulations into
computer models became interesting. During 2017, Al became the most interesting algorithm to do
that.

Noah: | have to ask-before we continue talking about climate science-are you a musician? Do you
still play?

Mike: | play super casually. My jazz chops have dwindled, but there's a lovely sunset gig | play in
San Diego with someone who lets me play not too many chords and improvise. | love music and
communicating.

Noah: What's your instrument?

Mike: | play keyboards.

Noah: Great. I'm a drummer-we'll have to get together sometime.

Mike: Right on.

Noah: Let's talk climate science. Can you give a brief overview of what we mean when we talk about
climate science? Then, maybe talk about how the technologies-and along with it, your perspective
on climate science-have evolved over the years.



Mike: Sure. Cut me off if | nerd out too much, but we're all familiar with weather prediction, right?
Climate prediction is similar, but with key differences.

Weather is like how the next few days unfold while the atmosphere still has memory of its initial
conditions, which I've observed and can initialize a simulator on. Climate simulations solve very
similar equations, but we're talking not about tomorrow's weather, but the climate-the average of
weather, the statistics of weather. Those are predictable on different time scales for different
reasons.

For example, here in San Diego, May is warmer than January because there's more solar
energy-more watts per square meter-coming in. Add energy, and it heats up. Future climate change
works the same way: add greenhouse gases, they back-radiate longwave radiation like little heat
lamps in the sky, adding energy so the system heats up.

But the trillion-dollar question is: how much will it heat up? All these hazards-extreme storms,
droughts, wildfires-scale with the overall warmth of the planet, like a fever. A lot of that depends on
complicated processes we can't simulate well, like clouds. Will they dissipate like ice sheets do,
revealing darker surfaces and amplifying warming? Or will they thicken and brighten the planet,
reflecting more energy as the planet warms?

Simulating future climate brings supercomputers to their knees. We have to cover the whole planet
at high resolution for 100 years, then run dozens of scenarios and hundreds of ensemble members
to sample chaotic outcomes. It's a never-ending enterprise-like learning jazz.

| fixate on clouds because | think they're mission-critical.

Noah: You mentioned that around 2017 Al started becoming a tool of choice for simulation and for
climate problems. How is Al transforming the way we simulate and understand how climate works
on Earth?

Mike: Al can short-circuit Moore's law and bring resolution into simulators ahead of computational
schedule. Take complicated cloud physics you can simulate convincingly for a small patch of
atmosphere over a few weeks-don't scale it up to the whole planet for hundreds of years. Focus Al
on that: learn the physics by training dense neural networks as emulators. Once trained, they run
blazing fast.

In 2018, | had this wonderful experience where our hybrid physics-Al approach worked better than |
thought, giving a 20x to 100x speedup in simulations. It totally changed my view of how much
resolution and complexity we can afford today.

Fast-forward five years, and it's no longer just hybrid physics-Al simulations. We're now talking
about full-Al simulators of the atmosphere. That brings huge ensembles for counterfactual weather
scenarios, interactivity we never imagined, and the ability to "paint" resolution onto low-res
predictions. Al is disrupting the entire Earth system modeling stack.

Noah: When you talk about resolution in climate modeling, what does that mean? Is it more precise
timeframe predictions, or better predictions of what's going to happen?

Mike: In physics-based climate simulation, you write the governing equations, then divide the world
up into a mesh to solve them numerically. The finer the mesh, the more computing power you need.
To simulate 100 years, hundreds of times, the mesh is coarser than we'd like.

A typical government climate prediction 50 years out resolves scales of 25 kilometers or so. But if
you look at satellite observations at that scale, you see complex interior structures-cloud processes,
storms-that aren't explicitly represented in standard simulations. Instead, a human-crafted
"parameterization” or "cartoon model" approximates that subgrid complexity. Resolution refers to the
mesh size: the finer it is, the more processes you can resolve explicitly and the fewer guesses you



need to make.

Noah: Can you talk about some breakthroughs you've been involved with over the years-using
machine learning and Al to accelerate simulations?

Mike: Sure. One thread was my work as a university professor on hybrid physics-Al simulation.
Embedding thousands of copies of an Al emulator inside a planetary model makes it hard to
control-interactions between the Al subunits and fluid dynamics can push you out of sample. So we
did a benchmarking activity at NeurlPS, teamed with NSF and NVIDIA, to create open code, APIs,
and a Kaggle competition. That helped the community discover strategies to tame these brittle
hybrid systems.

When | joined NVIDIA, | discovered a new breed of scientist training massively ambitious Al models
covering the entire planet-pure Al, no physics solver, like video prediction but with a dozen
atmospheric channels instead of RGB color. You train a network to predict the next time step of
wind, temperature, humidity, etc., then roll it out autoregressively as a weather forecast. Three years
ago, | was skeptical, but the world now agrees: these pure Al weather forecasts are the most skillful
in the world, even if inscrutable.

We then asked: can generative Al do video-style super-resolution on climate data? Can we turn
low-res, "blurry" predictions into super-resolved versions, synthesizing new high-res variables like
radar reflectivity for rainfall? It worked far better than | expected. We now have a system called
CorDiff, which does multivariate super-resolution and new-channel synthesis. It's being used to
generate high-resolution state estimates of the atmosphere from coarse climate data.

Noah: When you talk about predicting weather and climate, is there a metric for accuracy-like a
percentage number? How has it changed since advanced Al and generative Al?

Mike: For weather forecasting, it's very clear. The pace of improvement using Al is outpacing
physics models. You can look at the "quiet revolution in weather forecasting” graph: physics-based
skill improvements over decades have plateaued, while Al has leapfrogged that trajectory.

For climate prediction, it's harder: the answer is out of sample, 50 years from now. We predict a
range of outcomes, and concepts like energy and mass conservation are crucial. The ecosystem
effect is that researchers are adapting Al for weather prediction to climate prediction. For example,
you can train an emulator not on weather observations but on climate projection outputs. Those
trained Al models can be shared easily, letting people "run" climate predictions much faster than
downloading huge data sets.

Some groups are building fully Al climate simulators with correct atmosphere-ocean coupling, mass
and energy conservation, and proper responses to CO? forcing. It's promising but still work in
progress.

Noah: What do we do with these predictions? How can advances in Al-driven climate modeling help
us prepare and adapt to extreme weather and climate change?

Mike: | see two big impacts. First, we can study statistics of rare extremes-the low-likelihood,
high-impact events. Observations are too limited to sample them well, and physical simulators are
too slow to generate enough counterfactuals. Al models can generate huge ensembles at 1,000x
speedup. For instance, Berkeley researchers used our Al model Forecast Net to generate 28,000
years' equivalent of summer 2023, giving 7,000 weather "realizations" per day instead of one. That
massive dataset lets you study heat wave statistics, climate drivers, and future changes with
satisfying sample sizes. Insurance companies are already using it.

Second, improved weather forecasting-more interactivity and steerability. My team released
"Climate in a Model," an interactive climate sampler. You feed in three inputs-time of day, time of



year, and ocean surface temperature-and it outputs thousands of samples of weather fields at 13
million pixels across 12 variables. You can even steer it by region: ask for tropical cyclones hitting
Bermuda, for example, and it will generate plausible samples consistent with those boundary
conditions. That kind of interactivity will empower planners, emergency managers, and
policymakers.

Noah: Are governmental organizations and disaster response agencies using these interactive
simulators to inform policy decisions and disaster planning?

Mike: It's an ecosystem in progress. We work with European science advisors like Bjorn Stevens at
ECMWE. He envisions a workflow where you start with credible, best-in-class physics model output,
then layer Al on top to broaden access-interact with the data while preserving provenance and
credibility. That hybrid approach addresses liability and trust concerns.

Meanwhile, climate-tech startups are using Al for state estimation-turning proprietary sensor data
into high-quality weather forecasting inputs. The broader ecosystem will decide how to use these
capabilities-perhaps in digital twins of electrical grids, power stations, and ultimately the whole
atmosphere and climate, enabling end-to-end optimization and resilience planning via differentiable
simulation.

Noah: In the intro, | referenced digital twins in the industrial context. How do digital twins play into
climate science?

Mike: We already think of climate simulators as digital twins of the Earth for scenario planning:
"What if humans evolve the land surface this way?" or "What if we follow that mitigation pathway?"
Al surrogates for physical climate models reduce latency in familiar digital twins. But imagine
backpropagating through every layer-from the electrical grid to power stations to the atmosphere to
the climate-and optimizing for resilience to low-likelihood extremes. That's the larger vision.

Noah: You gave a recent TED Talk about Al and climate simulation. Why give a TED Talk, and what
message did you hope to leave the public with?

Mike: | wanted people to know something exciting is going on in atmospheric simulation-technology
nobody would have predicted 10 years ago. These new Al simulators have unprecedented speed,
interactivity, and multi-scale capabilities. | wanted to highlight that it's a beneficial use of Al for a
problem that affects us all: weather and climate prediction. And there's a "cocoon" of collaboration
between academia, government labs, and industry driving it forward.

One remarkable aspect | mentioned is Al's ability to incorporate far more observations than physics
models-no human-written parameterizations to shock the model. We can use satellite and station
observations directly, perhaps even build Al-only climate predictions from observations alone. The
unification of Al for state estimation and prediction is happening now; we don't yet know the
predictability limits of the Earth system in a world with powerful Al.

Noah: That reminds me of medical imaging and astronomy, where Al finds new markers in existing
data. Do you see similar phenomena in weather observations-discovering unknown patterns in
historical records that improve prediction?

Mike: Absolutely. There are papers from the University of Washington claiming to extend
predictability limits-controversial but exciting. Phenomena like subseasonal forecasting (three to five
weeks) involve ocean and land-surface memory that we hope Al can unlock. But we face a unique
problem: only decades of satellite observations exist-tens of thousands of days, not billions of
internet images. So some phenomena remain under-sampled. We'll always need a combination of
physical simulators for deep-time projections and Al trained on observations for near-term
improvements.



Noah: Does synthetic data play a significant role in climate science?

Mike: Yes. We can leverage large volumes of simulated data-thousands of years of Al forecasts or
physical model output-for pre-training. Then we fine-tune on the highest-quality observations. That's
an active area of research.

Noah: Looking ahead, what are the next big things you and the climate science community are
working on, especially at NVIDIA?

Mike: Globally, the ocean simulation community is catching up to the atmosphere and weather
community. The ocean absorbs the vast majority of excess heat we've put into the Earth system.
Marine heat waves will largely control future interannual extremes. Full-ocean emulators have
emerged this year, and people are beginning to couple them with full-atmosphere emulators. It's like
the 1980s physics model coupling, but on an accelerated timeline-seasonal forecasting and El Nifio
predictions via Al-emulators.

At NVIDIA, I'm excited about interactivity. We published a paper called "Climate in a Bottle." It takes
three inputs-time of day, time of year, and sea-surface temperature-and outputs 600 MB of sampled
atmospheric fields across 13 million pixels and 12 variables. It preserves the correct seasonal and
daily cycles, modes of variability, and even allows you to steer events, like drawing a map of where
you want tropical cyclones to appear. It's the tip of the iceberg for new interactive, query-driven
climate tools.

Noah: For concerned citizens or technologists listening, what can we do to get involved, support
climate science, and support sustainability through Al?

Mike: If you're a citizen, contact your representatives about funding for sustained Earth-observing
systems. Machine learning is nothing without data. If you value the observing satellites and
modeling agencies that produce the data driving this Al revolution, let policymakers know.

If youre an ML researcher, try a climate-related Kaggle competition or contribute to open
benchmarks-many are still unsolved. And have conversations: the planet is warming, our past
emissions will continue to warm it for decades, and we need to think about what to do. Al will let us
interact more directly with predictions of the future; awareness and dialogue are vital.

Noah: Mike, for listeners who want to learn more or follow your team's work, where should they go
online?

Mike: Look up NVIDIA Earth2-that's the name of our initiative. You'll find software, open-source
recipes for simulation technologies, APIs, and training materials. We hope the ecosystem builds on
it.

Noah: Fantastic. Mike Pritchard, thank you so much for taking the time to join the podcast. It's a
fascinating conversation, and despite the seriousness of climate change, you've left me optimistic
about how these technologies can help us understand and adapt to the climate. What a time to be
alive.

Mike: Thanks, Noah. It's a real privilege to represent a huge team of humble, earnest technologists,
engineers, and scientists working on these problems. I'm just a mouthpiece-credit goes to them.



